img

官方微信

高级检索

中国沙漠 ›› 2025, Vol. 45 ›› Issue (6): 154-165.DOI: 10.7522/j.issn.1000-694X.2025.00108

• • 上一篇    

陆生蓝藻滑动运动及其关键影响因素研究进展

方焱1,2(), 李彤1, 张元明1()   

  1. 1.中国科学院新疆生态与地理研究所 干旱区生态安全与可持续发展全国重点实验室,新疆 乌鲁木齐 830011
    2.中国科学院大学,北京 100049
  • 收稿日期:2025-04-29 修回日期:2025-07-04 出版日期:2025-11-20 发布日期:2025-11-26
  • 通讯作者: 张元明
  • 作者简介:方焱(1999—),女,湖南桃源人,硕士研究生,主要从事蓝藻培养和趋向性研究。E-mail: fangyan22@mails.ucas.ac.cn
  • 基金资助:
    国家联合基金重点项目(U2003214)

Research progress on the gliding motility of terrestrial cyanobacteria and key influencing factors thereof

Yan Fang1,2(), Tong Li1, Yuanming Zhang1()   

  1. 1.State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands,Xinjiang Institute of Ecology and Geography,Chinese Academy of Sciences,Urumqi 830011,China
    2.University of Chinese Academy of Sciences,Beijing 100049,China
  • Received:2025-04-29 Revised:2025-07-04 Online:2025-11-20 Published:2025-11-26
  • Contact: Yuanming Zhang

摘要:

蓝藻是具有光合能力的原核生物,是地球上最古老的产氧生物,作为初级生产者在生态系统碳氮循环中发挥重要作用。蓝藻的运动能力与其极强的适应性密切相关。全面梳理了陆生蓝藻滑动及其关键影响因素的研究进展,综合分析了蓝藻对包括水分、光照、昼夜节律、气体浓度、盐度和营养物质浓度在内的多种因素变化进行响应等方面的研究成果。蓝藻的滑动运动依赖其产生的胞外分泌物,这些分泌物不仅提供物理支撑,其厚度和成分还会影响蓝藻滑动的速度和方向。蓝藻能感知光照、水分、盐度等环境因素,并通过滑动做出响应。此外,气体、营养物质和昼夜节律等因素也能影响蓝藻的滑动行为。当前,影响陆生蓝藻滑动的环境因素研究仍面临微环境调控、实时观测及量化手段、分子机制多样性等挑战。未来,需深化蓝藻趋向性运动生态功能解析,突破分子调控机制研究瓶颈,阐明其通过信号转导途径调控滑动行为的作用机理。建议整合分子生物学与遗传学方法,系统鉴定驱动滑动运动的关键基因与蛋白质互作网络,解析多环境因子协同作用的整合调控机制,为揭示微生物环境适应策略提供理论范式与技术支撑。

关键词: 蓝藻, 滑动, 运动性, 趋光性, 趋化性, 生物复合体

Abstract:

As photosynthetic prokaryotes and the oldest oxygen-producing organisms on Earth, cyanobaceria play vital rolse as primary producers in the carbon and nitrogen cycles of ecosystems. The motility of cyanobacteria is closely linked to their remarkable adaptability. This article comprehensively reviewed research advances in the gliding motility of terrestrial cyanobacteria and key influencing factors of this process. The review integrated findings made on the migrational responses of cyanobacteria to diverse environmental factors, including water availability, light, circadian rhythms, gas concentrations, salinity, and nutrient levels. The gliding motility of cyanobacteria relies on the secretion of extracellular polymeric substances, which not only provide physical support but can also modulate the speed and direction of the gliding movement through its thickness and composition. Cyanobacteria can sense environmental cues such as light, moisture, and salinity, and respond via gliding. Factors like dissolved gas concentrations, nutrient availability, and circadian rhythms have been shown to also be able to influence the gliding behavior. Current research on the drivers of terrestrial cyanobacterial gliding faces challenges, technically, choices of in situ visualization techniques are limited; also the microenvironmental regulatory processes, as well as the underlaying molecular mechanisms are still not yet fully elucidated. Future studies should strive to deepen the understading of the ecological functions cyanobacterial gliding, reveal the underlaying molecular regulatory mechanisms, and clarify the mechanistic role of signal transduction pathways in regulating gliding behavior. We recommend adopting integrated molecular biology and genetic approaches to systematically identify key genes and protein interaction networks driving gliding motility, while deciphering the integrated regulatory mechanisms underlying the synergistic effects of multiple environmental factors. Such efforts will establish both theoretical paradigms and technical foundations for revealing microbial environmental adaptation strategies.

Key words: cyanobacteria, gliding, motility, phototaxis, chemotaxis, biological matrix

中图分类号: