中国沙漠 ›› 2025, Vol. 45 ›› Issue (6): 154-165.DOI: 10.7522/j.issn.1000-694X.2025.00108
• • 上一篇
收稿日期:2025-04-29
修回日期:2025-07-04
出版日期:2025-11-20
发布日期:2025-11-26
通讯作者:
张元明
作者简介:方焱(1999—),女,湖南桃源人,硕士研究生,主要从事蓝藻培养和趋向性研究。E-mail: fangyan22@mails.ucas.ac.cn
基金资助:
Yan Fang1,2(
), Tong Li1, Yuanming Zhang1(
)
Received:2025-04-29
Revised:2025-07-04
Online:2025-11-20
Published:2025-11-26
Contact:
Yuanming Zhang
摘要:
蓝藻是具有光合能力的原核生物,是地球上最古老的产氧生物,作为初级生产者在生态系统碳氮循环中发挥重要作用。蓝藻的运动能力与其极强的适应性密切相关。全面梳理了陆生蓝藻滑动及其关键影响因素的研究进展,综合分析了蓝藻对包括水分、光照、昼夜节律、气体浓度、盐度和营养物质浓度在内的多种因素变化进行响应等方面的研究成果。蓝藻的滑动运动依赖其产生的胞外分泌物,这些分泌物不仅提供物理支撑,其厚度和成分还会影响蓝藻滑动的速度和方向。蓝藻能感知光照、水分、盐度等环境因素,并通过滑动做出响应。此外,气体、营养物质和昼夜节律等因素也能影响蓝藻的滑动行为。当前,影响陆生蓝藻滑动的环境因素研究仍面临微环境调控、实时观测及量化手段、分子机制多样性等挑战。未来,需深化蓝藻趋向性运动生态功能解析,突破分子调控机制研究瓶颈,阐明其通过信号转导途径调控滑动行为的作用机理。建议整合分子生物学与遗传学方法,系统鉴定驱动滑动运动的关键基因与蛋白质互作网络,解析多环境因子协同作用的整合调控机制,为揭示微生物环境适应策略提供理论范式与技术支撑。
中图分类号:
方焱, 李彤, 张元明. 陆生蓝藻滑动运动及其关键影响因素研究进展[J]. 中国沙漠, 2025, 45(6): 154-165.
Yan Fang, Tong Li, Yuanming Zhang. Research progress on the gliding motility of terrestrial cyanobacteria and key influencing factors thereof[J]. Journal of Desert Research, 2025, 45(6): 154-165.
图1 集胞藻细胞受到左侧光源(箭头表示)照射下运动不同阶段的照片[56]注:(A)第一阶段,大部分细胞独立运动,四周有少数成对细胞,没有表现出强烈的偏向光源的运动;(B)第二阶段,细胞开始聚集形成更大的群体,运动速率比第一阶段更快,但仍没有强烈偏向光源运动;(C)第三阶段,细胞群周围出现明显的冠状结构(短箭头所示),运动速率比第二阶段更快,右上方形成一个小型指状突起,在此突起中细胞挤在前面,有向光方向移动的倾向;(D)减小放大倍数,可观察到所形成的指状突起,每个“手指”长约 2 mm,前端细胞密集,可在6 h内移动1 mm,此时细胞的运动速率约为第一阶段的6~7倍[56]
Fig.1 Photos of Synechocystis at different movement stages under left-side light irradiation (indicated by yellow arrows)[56]
图2 非圆形光斑导致的藻丝边界积累现象[55]注:上排是在约17~21 h光照后藻丝的显微镜照片;下排是数值模拟中藻丝模型的时间平均向列序取向,颜色的饱和度经过调整以反映藻丝的平均密度,颜色越亮表示藻丝密度越高,藻丝数量越少呈现的颜色越暗。图F中提供了藻丝排列长轴方向的颜色代码,每种颜色与藻丝滑动的方向相对应,每种形状对应的绕数(winding number)显示在图片左上角[55]
Fig.2 Accumulation patterns for non-circular illumination[55]
图3 将3种蓝藻接种于BG11培养基上,并分别在不同温度下培养72 h后取样,可以看出不同温度对EPS生物物理特性的影响[19]注:图A、B表示Nostoc sp.(FACHB-2009)的鞘,图C、D表示Dolichospermum sp.(FACHB-82)的荚膜,图E、F表示Microcystis sp.(FACHB-3296)的黏液。黑色实心三角形表示在25 ℃下每种EPS的生物物理特性作为比对基准,彩色三角形表示10 ℃和35 ℃下EPS物理特性的变化程度[19]
Fig.3 Effects of different temperatures on the biophysical properties of external layers at the final sampling time (72 h)[19]
| [1] | Allaf M M, Peerhossaini H.Cyanobacteria:model microorganisms and beyond[J].Microorganisms,2022,10(4):696. |
| [2] | Shepard R N, Sumner D Y.Undirected motility of filamentous cyanobacteria produces reticulate mats[J].Geobiology,2010,8(3):179-190. |
| [3] | Sourjik V, Wingreen N S.Responding to chemical gradients:bacterial chemotaxis[J].Current Opinion in Cell Biology,2012,24(2):262-268. |
| [4] | Chennu A, Grinham A, Polerecky L,et al.Rapid reactivation of cyanobacterial photosynthesis and migration upon rehydration of desiccated marine Microbial mats[J].Frontiers in Microbiology,2015,6:1472. |
| [5] | Sorochkina K, Ayuso S V, Garcia-Pichel F.Establishing rates of lateral expansion of cyanobacterial biological soil crusts for optimal restoration[J].Plant and Soil,2018,429(1/2):199-211. |
| [6] | Hu C X, Liu Y D, Song L R,et al.Effect of desert soil algae on the stabilization of fine sands[J].Journal of Applied Phycology,2002,14(4):281-292. |
| [7] | Scott B, Zaloumis J, Garcia-Pichel F.Aeolian dust deposition as a driver of cyanobacterial community structure in biological soil crusts[J].Soil Biology and Biochemistry,2025,202:109654. |
| [8] | Gao K S.Chinese studies on the edible blue green alga,Nostoc flagelliforme:a review[J].Journal of Applied Phycology,1998,10(1):37-49. |
| [9] | Hoiczyk E.Gliding motility in cyanobacteria:observations and possible explanations[J].Archives of Microbiology,2000,174(1/2):11-17. |
| [10] | Ehlers K M, Samuel A D T, Berg H C,et al.Do cyanobacteria swim using traveling surface waves[J].Proceedings of the National Academy of Sciences of the United States of America,1996,93(16):8340-8343. |
| [11] | Choi J S, Chung Y H, Moon Y J,et al.Photomovement of the gliding cyanobacterium Synechocystis sp.PCC 6803[J].Photochemistry and Photobiology,1999,70(1):95-102. |
| [12] | Waterbury J B, Willey J M, Franks D G,et al.A cyanobacterium capable of swimming motility[J].Science,1985,230 (4721):74-76. |
| [13] | Hoiczyk E, Baumeister W.Envelope structure of 4 gliding filamentous cyanobacteria[J].Journal of Bacteriology,1995,177(9):2387-2395. |
| [14] | Hoiczyk E, Baumeister W.The junctional pore complex,a prokaryotic secretion organelle,is the molecular motor underlying gliding motility in cyanobacteria[J].Current Biology,1998,8(21):1161-1168. |
| [15] | Tamulonis C, Kaandorp J.A model of filamentous cyanobacteria leading to reticulate pattern formation[J].Life,2014,4(3):433-456. |
| [16] | Khayatan B, Meeks J C, Risser D D.Evidence that a modified type IV pilus-like system powers gliding motility and polysaccharide secretion in filamentous cyanobacteria[J].Molecular Microbiology,2015,98(6):1021-1036. |
| [17] | Menon S N, Varuni P, Menon G I.Information integration and collective motility in phototactic cyanobacteria[J].Public Library of Science Computational Biology,2020,16(4):e1007807. |
| [18] | Varuni P, Menon S N, Menon G I.Phototaxis as a collective phenomenon in cyanobacterial colonies[J].Scientific Reports,2017,7:17799. |
| [19] | Cheng Y R, Li Z, Xiao Y,et al.Insights into the role of external layers in cyanobacteria at varying temperatures and their regulatory mechanism[J].Freshwater Biology,2022,67(11):1889-1902. |
| [20] | Pereira S, Zille A, Micheletti E,et al.Complexity of cyanobacterial exopolysaccharides:composition,structures,inducing factors and putative genes involved in their biosynthesis and assembly[J].FEMS Microbiology Reviews,2009,33(5):917-941. |
| [21] | Ursell T, Chau R M W, Wisen S,et al.Motility enhancement through surface modification is sufficient for cyanobacterial community organization during phototaxis[J].Public Library of Science Computational Biology,2013,9(9):e1003205. |
| [22] | Xu H C, Cai H Y, Yu G H,et al.Insights into extracellular polymeric substances of cyanobacterium Microcystis aeruginosa using fractionation procedure and parallel factor analysis[J].Water Research,2013,47(6):2005-2014. |
| [23] | Ye T R, Zhao Z, Bai L L,et al.Characteristics and bacterial community dynamics during extracellular polymeric substance (EPS) degradation of cyanobacterial blooms[J].Science of the Total Environment,2020,748:142309. |
| [24] | Garcia-Pichel F, Wojciechowski M F.The Evolution of a capacity to build supra-cellular ropes enabled filamentous cyanobacteria to colonize highly erodible substrates[J].Public Library of Science ONE,2009,4(11):e7801. |
| [25] | Garcia-Pichel F, Pringault O.Cyanobacteria track water in desert soils[J].Nature,2001,413(6854):380-381. |
| [26] | Pringault O, Garcia-Pichel F.Hydrotaxis of cyanobacteria in desert crusts[J].Microbial Ecology,2004,47(4):366-373. |
| [27] | Brock T D.Effect of water potential on a Microcoleus (cyanophyceae) from a desert crust[J].Journal of Phycology,1975,11(3):316-320. |
| [28] | Lamparter T, Babian J, Fröhlich K,et al.The involvement of type IV pili and phytochrome CphA in gliding motility,lateral motility and photophobotaxis of the cyanobacterium Phormidium lacuna [J].Public Library of Science ONE,2021,17(1):e0249509. |
| [29] | Rajeev L, do Rocha U N, Klitgord N,et al.Dynamic cyanobacterial response to hydration and dehydration in a desert biological soil crust[J].ISME Journal,2013,7(11):2178-2191. |
| [30] | Bebout B M, Garcia-Pichel F.UV B-induced vertical migrations of cyanobacteria in a microbial mat[J].Applied and Environmental Microbiology,1995,61(12):4215-4222. |
| [31] | Kruschel C, Castenholz R W.The effect of solar UV and visible irradiance on the vertical movements of cyanobacteria in microbial mats of hypersaline waters[J].FEMS Microbiology Ecology,1998,27(1):53-72. |
| [32] | Bunbury F, Rivas C, Calatrava V,et al.Differential phototactic behavior of closely related cyanobacterial isolates from Yellowstone hot spring biofilms[J].Applied and Environmental Microbiology,2022,88(10):e0019622. |
| [33] | Richardson L L, Castenholz R W.Diel vertical movements of the cyanobacterium Oscillatoria terebriformis in a sulfide-rich hot-spring microbial mat[J].Applied and Environmental Microbiology,1987,53(9):2142-2150. |
| [34] | Garcia-Pichel F, Mechling M, Castenholz R W.Diel migrations of microorganisms within a benthic,hypersaline mat community[J].Applied and Environmental Microbiology,1994,60(5):1500-1511. |
| [35] | Zhang J C, Li S B, Sun T,et al.Oscillation of type IV pili regulated by the circadian clock in cyanobacterium Synechococcus elongatus PCC7942[J].Science Advances,2024,10(4):eadd9485. |
| [36] | Whale G F, Walsby A E.Motility of the cyanobacterium Microcoleus chthonoplastes in mud[J].British Phycological Journal,1984,19(2):117-123. |
| [37] | Malin G, Walsby A E.Chemotaxis of cyanobacterium on gradients of carbon-dioxide,bicarbonate and oxygen[J].Journal of General Microbiology,1985,131:2643-2652. |
| [38] | Kohls K, Abed R M M, Polerecky L,et al.Halotaxis of cyanobacteria in an intertidal hypersaline microbial mat[J].Environmental Microbiology,2010,12(3):567-575. |
| [39] | Nelson C, Giraldo-Silva A, Garcia-Pichel F.A symbiotic nutrient exchange within the cyanosphere microbiome of the biocrust cyanobacterium,Microcoleus vaginatus [J].ISME Journal,2021,15(1):282-292. |
| [40] | Couradeau E, Felde V, Parkinson D,et al.In situ X-Ray tomography imaging of soil water and cyanobacteria from biological soil crusts undergoing desiccation[J].Frontiers in Environmental Science,2018,6:65. |
| [41] | Franca M B, Panek A D, Eleutherio E C A.Oxidative stress and its effects during dehydration[J].Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology,2007,146(7):621-631. |
| [42] | Bhaya D.Light matters:phototaxis and signal transduction in unicellular cyanobacteria[J].Molecular Microbiology,2004,53(3):745-754. |
| [43] | 赵燕翘,连煜超,许文文,等.中国人工蓝藻结皮研究进展[J].中国沙漠,2023,43(5):214-222. |
| [44] | Tamulonis C, Postma M, Kaandorp J.Modeling filamentous cyanobacteria reveals the advantages of long and fast trichomes for optimizing light exposure[J].Public Library of Science ONE,2011,6(7):e22084. |
| [45] | Schuergers N, Lenn T, Kampmann R,et al.Cyanobacteria use micro-optics to sense light direction[J].eLife,2016,5:e12620. |
| [46] | Schuergers N, Mullineaux C W, Wilde A.Cyanobacteria in motion[J].Current Opinion in Plant Biology,2017,37:109-115. |
| [47] | Wilde A, Mullineaux C W.Light-controlled motility in prokaryotes and the problem of directional light perception[J].FEMS Microbiology Reviews,2017,41(6):900-922. |
| [48] | Enomoto G, Wallner T, Wilde A.Control of light-dependent behaviour in cyanobacteria by the second messenger cyclic di-GMP[J].MicroLife,2023,4:uqad019. |
| [49] | Pentecost A.Effects of sedimentation and light-intensity on mat-forming Oscillatoriaceae with particular reference to Microcoleus lyngbyaceus Gomont[J].Journal of General Microbiology,1984,130:983-990. |
| [50] | Chau R M W, Bhaya D, Huang K C.Emergent phototactic responses of cyanobacteria under complex light regimes[J].Microbiology,2017,8(2):e02330. |
| [51] | Wilde A, Fiedler B, Börner T.The cyanobacterial phytochrome Cph2 inhibits phototaxis towards blue light[J].Molecular Microbiology,2002,44(4):981-988. |
| [52] | Fourçans A, Solé A, Diestra E,et al.Vertical migration of phototrophic bacterial populations in a hypersaline microbial mat from Salins-de-Giraud (Camargue,France)[J].FEMS Microbiology Ecology,2006,57(3):367-377. |
| [53] | Julius L A N, Matter L, Schuergers N,et al.Surface characterisation reveals substrate suitability for cyanobacterial phototaxis[J].Acta Biomaterialia,2023,155:386-399. |
| [54] | Lichtenberg M, Cartaxana P, Kühl M.Vertical migration optimizes photosynthetic efficiency of motile cyanobacteria in a coastal microbial mat[J].Frontiers in Marine Science,2020,7:359. |
| [55] | Kurjahn M, Abbaspour L, Papenfuss F,et al.Collective self-caging of active filaments in virtual confinement[J].Nature Communications,2024,15(1):9122. |
| [56] | Burriesci M, Bhaya D.Tracking phototactic responses and modeling motility of Synechocystis sp.strain PCC6803[J].Journal of Photochemistry and Photobiology B-Biology,2008,91(2/3):77-86. |
| [57] | Donkor V, Hader D P.Effects of solar and ultraviolet-radiation on motility,photomovement and pigmentation in filamentous,gliding cyanobacteria[J].FEMS Microbiology Ecology,1991,86(2):159-168. |
| [58] | Garcia-Pichel F, Castenholz R W.Microbial Mats:Structure,Development and Environmental Significance[M].Heidelberg,Germany:Springer,1994. |
| [59] | Nadeau T L, Howard-Williams C, Castenholz R W.Effects of solar UV and visible irradiance on photosynthesis and vertical migration of Oscillatoria sp (cyanobacteria) in an Antarctic microbial mat[J].Aquatic Microbial Ecology,1999,20(3):231-243. |
| [60] | Soule T, Garcia-Pichel F, Stout V.Gene expression patterns associated with the biosynthesis of the sunscreen scytonemin in Nostoc punctiforme ATCC 29133 in response to UVA radiation[J].Journal of Bacteriology,2009,191(14):4639-4646. |
| [61] | Menon S N, Varuni P, Bunbury F,et al.Phototaxis in cyanobacteria:from mutants to models of collective behavior[J].Microbiology,2021,12(6):e02398-21. |
| [62] | Varuni P, Menon S N, Menon G I.Phototactic cyanobacteria as an active matter system[J].Indian Journal of Physics,2022,96(9):2589-2595. |
| [63] | Terauchi K, Ohmori M.Blue light stimulates cyanobacterial motility via a cAMP signal transduction system[J].Molecular Microbiology,2004,52(1):303-309. |
| [64] | Cohen S E, Golden S S.Circadian rhythms in cyanobacteria[J].Microbiology and Molecular Biology Reviews,2015,79(4):373-385. |
| [65] | Jabbur M L, Bratton B P, Johnson C H.Bacteria can anticipate the seasons:photoperiodism in cyanobacteria[J].Science,2024,385(6713):1105-1111. |
| [66] | Biddanda B A, McMillan A C, Long S A,et al.Seeking sunlight:rapid phototactic motility of filamentous mat-forming cyanobacteria optimize photosynthesis and enhance carbon burial in Lake Huron's submerged sinkholes[J].Frontiers in Microbiology,2015,6:930. |
| [67] | Xiao Y, Liu L X, Li Z,et al.The role of cyanobacterial external layers in mass transfer:evidence from temperature shock experiments by noninvasive microtest technology[J].Microorganisms,2020,8(6):861. |
| [68] | De Philippis R, Vincenzini M.Exocellular polysaccharides from cyanobacteria and their possible applications[J].FEMS Microbiology Reviews,1998,22(3):151-175. |
| [69] | Abed R M M, Polerecky L, Al Najjar M,et al.Effect of temperature on photosynthesis,oxygen consumption and sulfide production in an extremely hypersaline cyanobacterial mat[J].Aquatic Microbial Ecology,2006,44(1):21-30. |
| [70] | Xiao Y, Cheng Y R, He P,et al.New insights into external layers of cyanobacteria and microalgae based on multiscale analysis of AFM force-distance curves[J].Science of the Total Environment,2021,774:145680. |
| [71] | Garcia-Pichel F, Kühl M, Nübel U,et al.Salinity-dependent limitation of photosynthesis and oxygen exchange in microbial mats[J].Journal of Phycology,1999,35(2):227-238. |
| [72] | Bebout B M, Carpenter S P, Des Marais D J,et al.Long-term manipulations of intact microbial mat communities in a greenhouse collaboratory:simulating earth's present and past field environments[J].Astrobiology,2002,2(4):383-402. |
| [73] | Rothrock M J, Garcia-Pichel F.Microbial diversity of benthic mats along a tidal desiccation gradient[J].Environmental Microbiology,2005,7(4):593-601. |
| [74] | Brookes J D, Ganf G G.Variations in the buoyancy response of Microystis aeruginosa to nitrogen,phosphorus and light[J].Journal of Plankton Research,2001,23(12):1399-1411. |
| [75] | Paerl H W, Bebout B M.Direct measurement of O2-depleted microzones in marine oscillatoria:relation to N2 fixation[J].Science,1988,241(4864):442-445. |
| [76] | Paerl H W, Gallucci K K.Role of chemotaxis in establishing a specific nitrogen-fixing cyanobacterial-bacterial association[J].Science,1985,227(4687):647-649. |
| [77] | Toh P S Y, Yew S P, Yong K H,et al.Phototactic motility of Synechocystis sp UNIWG (cyanobacteria) from brackish environment[J].Journal of Phycology,2010,46(1):102-111. |
| [78] | Nilsson M, Rasmussen U, Bergman B.Cyanobacterial chemotaxis to extracts of host and nonhost plants[J].FEMS Microbiology Ecology,2006,55(3):382-390. |
| [79] | Lacey R F, Binder B M.Ethylene regulates the physiology of the cyanobacterium Synechocystis sp PCC 6803 via an ethylene receptor[J].Plant Physiology,2016,171(4):2798-2809. |
| [80] | Allen C J, Lacey R F, Bickford A B B,et al.Cyanobacteria respond to low levels of ethylene[J].Frontiers in Plant Science,2019,10:950. |
| [1] | 赵洋, 连煜超, 赵燕翘, 许文文, 赵逸雪. 生物土壤结皮在防沙治沙中的应用综述[J]. 中国沙漠, 2025, 45(3): 31-38. |
| [2] | 赵一丹, 陈拓, 刘阳, 张璐, 张怡洋, 张威, 章高森. 河西荒漠区石下生蓝藻叶绿素荧光参数的日变化[J]. 中国沙漠, 2024, 44(5): 23-28. |
| [3] | 赵燕翘, 连煜超, 许文文, 赵逸雪, 韩高玲, 赵洋. 中国人工蓝藻结皮研究进展[J]. 中国沙漠, 2023, 43(5): 214-222. |
| [4] | 王楠, 赵燕翘, 许文文, 孙靖尧, 李承义, 赵洋. 两种荒漠蓝藻生长特征及其对培养水体微环境的影响[J]. 中国沙漠, 2023, 43(1): 66-74. |
| [5] | 王楠, 许文文, 赵燕翘, 赵洋. 荒漠蓝藻规模化培养试验[J]. 中国沙漠, 2022, 42(4): 181-189. |
| [6] | 闫沛迎, 屈建军, 杨自辉, 肖建华, 唐进年. 不同生物气候区生物土壤结皮蓝藻物种多样性[J]. 中国沙漠, 2022, 42(2): 85-94. |
| [7] | 陶玲, 曹田, 吕莹, 张文杰, 任珺. 生物型凹凸棒基高分子固沙材料的复配效果[J]. 中国沙漠, 2017, 37(2): 276-280. |
| [8] | 鲍婧婷, 王进, 陈翠云. 固沙植被区生物土壤结皮中蓝藻群落的多样性[J]. 中国沙漠, 2015, 35(6): 1592-1598. |
| [9] | 刘 萱;张文煜*;贾东于;张 婕;王建州;赵伟刚. 河西走廊沙尘暴50 a频率突变检测分析[J]. 中国沙漠, 2011, 31(6): 1579-1584. |
| [10] | 张润琼;陈世平;刘莉娟;主 毅;曾维英;李建成. 近45 a六盘水大风天气气候特征分析[J]. 中国沙漠, 2009, 29(4): 733-776. |
| [11] | 屈建军, 郑本兴, 俞祁浩, 赵爱国. 罗布泊东阿奇克谷地雅丹地貌与库姆塔格沙漠形成的关系[J]. 中国沙漠, 2004, 24(3): 294-300. |
| [12] | 丁瑞强, 王式功, 尚可政, 杨德保, 李建红. 近45a我国沙尘暴和扬沙天气变化趋势和突变分析[J]. 中国沙漠, 2003, 23(3): 306-310. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
©2018中国沙漠 编辑部
地址: 兰州市天水中路8号 (730000)
电话:0931-8267545
Email:caiedit@lzb.ac.cn;desert@lzb.ac.cn